Photocatalytic H2 Evolution Using Different Commercial TiO2 Catalysts Deposited with Finely Size-Tailored Au Nanoparticles: Critical Dependence on Au Particle Size

نویسندگان

  • Ákos Kmetykó
  • Károly Mogyorósi
  • Péter Pusztai
  • Teodora Radu
  • Zoltán Kónya
  • András Dombi
  • Klára Hernádi
چکیده

One weight percent of differently sized Au nanoparticles were deposited on two commercially available TiO₂ photocatalysts: Aeroxide P25 and Kronos Vlp7000. The primary objective was to investigate the influence of the noble metal particle size and the deposition method on the photocatalytic activity. The developed synthesis method involves a simple approach for the preparation of finely-tuned Au particles through variation of the concentration of the stabilizing agent. Au was deposited on the TiO₂ surface by photo- or chemical reduction, using trisodium citrate as a size-tailoring agent. The Au-TiO₂ composites were synthetized by in situ reduction or by mixing the titania suspension with a previously prepared gold sol. The H₂ production activities of the samples were studied in aqueous TiO₂ suspensions irradiated with near-UV light in the absence of dissolved O₂, with oxalic acid or methanol as the sacrificial agent. The H₂ evolution rates proved to be strongly dependent on Au particle size: the highest H₂ production rate was achieved when the Au particles measured ~6 nm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Direct evidence of plasmon enhancement on photocatalytic hydrogen generation over Au/Pt-decorated TiO2 nanofibers.

Direct evidence of plasmon-enhanced H2 generation is observed in photocatalytic water reduction by using TiO2 electrospun nanofibers co-decorated with Au and Pt nanoparticles through dual-beam irradiation. The Au/Pt/TiO2 nanofibers exhibit certain activity for H2 generation under single irradiation at 420 nm that excites the defect/impurity states of TiO2. Significantly, when secondary irradiat...

متن کامل

Visible light-induced water splitting in an aqueous suspension of a plasmonic Au/TiO2 photocatalyst with metal co-catalysts.

We found that plasmonic Au particles on titanium(iv) oxide (TiO2) act as a visible-light-driven photocatalyst for overall water splitting free from any additives. This is the first report showing that surface plasmon resonance (SPR) in a suspension system effectively induces overall water splitting. Modification with various types of metal nanoparticles as co-catalysts enhanced the evolution of...

متن کامل

Catalysis and Photocatalysis by Nanoscale Au/TiO2: Perspectives for Renewable Energy

Nanoscale gold−titania (Au/TiO2) catalysts may provide the right combination of electronic structure, structural dynamics, and stability to facilitate wide ranging chemical transformations, including reactions for utilization of renewable energy sources. The Au/TiO2based systems have also emerged as promising photocatalysts capable of promoting light-induced production of hydrogen and other ren...

متن کامل

Finely controlled multimetallic nanocluster catalysts for solvent-free aerobic oxidation of hydrocarbons

The catalytic activity of alloy nanoparticles depends on the particle size and composition ratio of different metals. Alloy nanoparticles composed of Pd, Pt, and Au are widely used as catalysts for oxidation reactions. The catalytic activities of Pt and Au nanoparticles in oxidation reactions are known to increase as the particle size decreases and to increase on the metal-metal interface of al...

متن کامل

Liquid Phase Hydrogenation of p-Chloronitrobenzene on Au-Pd/TiO2 Catalysts: Effects of Reduction Methods

The effects of palladium addition and the reduction methods on Au/TiO2 were investigated. Pd was loaded on TiO2 firstly by incipient-wetness impregnation, Au was then loaded by deposition-precipitation method. The nominal loadings of Au and Pd were 1 wt% and 0.01 wt%. The bimetallic catalysts were reduced by heating at 453 K, by flowing H2 at 423 K, or by NaBH4 at 298 K. The catalysts were char...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2014